$S \underset{\text { Sатеытет тсннооосучто }}{\text { ® }}$
KING'S
College LONDON

The Measurement and Monitoring of Fire from Space A New Detector Processing Technique

Mike Cutter (SSTL), Mark Chang (SSTL), Martin Wooster (Kings College London) Surrey Satellite Technology Ltd, Tycho House, 20 Stephenson Road, Guildford, Surrey, GU2 7YE, UK Tel: +44 1483803803,
e-mail: m.cutter@sstl.co.uk

Abstract

This poster summaries a CEOI seedcorn activity to evaluate the use of low-cost bolometer detectors for fire measurement and monitoring from space.

Background to Global Biomass Burning

* Fires occur on all continents apart from Antarctica
* Satellite observations are the only method for wide-scale quantification
* Burned area and active fire signatures are used to make detections.
* Fires are responsible for a large fraction of annual carbon emissions to atmosphere (maybe $\sim 30 \%$ or more)
* Highly variable in space and time \& interannually.
* Cost of fire management is very high (billions \$ / yr) - much 'spotting' done by air.

Fire Detection Approach

* Identify fires via their intense thermal emissions
* Utilise MIR window $(3-5 \mu \mathrm{~m})$ for fire detection as that is the region of primary signal.
* Smoke is largely transparent in $(3-5 \mu \mathrm{~m})$ wavelength region
* Signal so strong that fires can be detected at sub-pixel level.
* LWIR window ($8-12 \mu \mathrm{~m}$) allows for discrimination of sun glint and TOA reflections

र. Y8.

E C

Bolometer Schematic

ULIS Bolometer Detector Test Setup

Fire Environments

-		\%					,
Estimated Radiance Signals							
	$\begin{aligned} & \text { Temperature } \\ & (\mathrm{K}) \end{aligned}$	Peakspectral emissions ($\mu \mathrm{m}$)		$\begin{array}{\|l\|} \hline 3.7 \text { Am } \\ \begin{array}{c} \text { Amplification } \\ \text { over background } \end{array} \\ \hline \end{array}$		Planck radiancefrom fire (W/m)	$0 \mu \mathrm{~m}$ Amplification over background
				$\begin{gathered} \text { No } \\ \text { solar } \\ \text { flux } \end{gathered}$	$\begin{gathered} 15 \% \\ \text { solar } \\ \text { albedo } \end{gathered}$		
Background	300	9.7	0.4	1	1	10	1
Exothermic reaction	550	5.3	146	360	130	94	9
Glowing combustion	825	3.5	1.556	3.900	1.400	252	25
Cool forest fire	1,000	2.9	3,591	8900	3,200	370	37
Estimated Max m heat fire	1.800	1.6	22,383	55,000	20,000	973	98

LWIR ULIS bolometer array (UL03041 384×288 pixel)

* Derive the specification of top level science requirements and mission functional requirements for fire measurement and monitoring from space
* Undertake a MW \& LW infrared bolometer detector test programme

Evaluate the radiometric performance of bolometer detectors for fire measurement and monitoring from space based platforms

- Derive system concepts and identify appropriate design trade-offs

